
 

 

 

 

;20169,AugustReceived Revised September 13, 2016 

2010 Mathematics Subject Classification: 62A01, 62F10, 81P15. 

Keywords and phrases: measurement theory, observables, Fisher’s maximum likelihood 

method, simultaneous measurements, Born’s probabilistic interpretation, Heisenberg picture. 

© 2016 Pioneer Scientific Publisher 

MEASUREMENT THEORETICAL APPROACH 

TO REGRESSION ANALYSIS 

KOHSHI KIKUCHI 

Faculty of Liberal Studies 

National Institute of Technology 

Kumamoto College 

2659-2 Suya, Koshi 

Kumamoto 861-1102 

Japan 

Abstract 

To make a unified understanding of statistic theory, we have proposed a 

measurement theory which is stated with an introduction of two axioms 

based on the principle in quantum mechanics, Born’s probabilistic 

interpretation and Heisenberg’s picture representation of simultaneous 

measurements. The objective of this paper is to examine regression 

analyses through the measurement theory. 

0. Introduction 

Adopting, as axioms, Born’s probabilistic interpretation and Heisenberg’s 

simultaneous measurements in quantum mechanics, Ishikawa [2] introduced a 

measurement theory with a view to setting a framework to make a unified 
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understanding of various kinds of research fields in so-called system theories. The 

objective of the present paper is to apply the method to give a good understanding of 

inferred issues in statistics, where we rely on Gauss-Fisher’s principle via Bayes 

theory. 

Throughout in this paper, the symbol Ω denotes a compact Hausdorff space with 

the Borel field .ΩB  The space ( )ΩC  denotes the Banach-algebra: 

( ) { }.oncontinuousis:: Ω|→Ω=Ω ffC R  

endowed with canonical structures. We use the notation: for functions f, g, the 

function gf  denotes the product of the functions and the inequality gf ≤  is 

defined by 

( ) ( )ω≤ω gf  for .Ω∈ω  

The function 0 and 1 denotes the zero function and the constant 1 function, 

respectively. 

Let ( )∗ΩC  be the dual Banach space of ( )ΩC  with the operator norm and with 

the product f,ρ̂  for ( )∗Ω∈ρ Cˆ  and ( ).Ω∈ Cf  We denote by ( )ΩM  the set of 

all measures on .ΩB  The Riesz theorem says that ( )∗ΩC  and ( )ΩM  can be 

identified in the following sense: there exists an isometrically continuous, linear and 

bijective map ( ) ( )∗Ω→ΩΨ CM:  with the identity 

( ) ( ) ( ) ( )∫Ω
ωρω=ρΨ dff  for ( )Ω∈ Cf  and ( ).Ω∈ρ M  

We shall introduce two subclasses of ( ) :ΩM  the mixed state class ( )Ωm
M  

and the pure state class ( )Ωp
M  defined by 

( ) ( ) ( ) ( ){ },1andfor0: =Ωρ∈≥ρ|Ω∈ρ=Ω ΩBMM AAm  

( ) ( ){ },: Ω∈ω|Ω∈δ=Ω ω MM
p  

where ωδ  is a point measure at ,Ω∈ω  i.e., 

( ) 1=δω A  for A∈ω  and 0 for .A∉ω  
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The space ( )Ωp
M  with the ∗weak  topology can be identified with the Ω, 

( )Ωp
M  is called a state space under the identification. 

1. Born Interpretations 

Following Davies [1], we shall introduce a concept of observables. In all 

descriptions of this paper, the symbol X denotes a set composed of finite elements 

and X
X 2=F  the power set of X. We call a triplet ( ) ( )ΩCX FX ,, F  with an index 

( )ΩC  an observable if ( )Ω→ CF XF:  satisfies 

 (i) ( ) 10 ≤≤ EF  for ,XE F∈  ( ) 0=∅F  and ( ) ,1=XF  

(ii) ( ) ( ) ( )2121 EFEFEEF +=U  for disjoint sets ,1E  .2 XE F∈  

By abstracting some concepts in mathematical engineerings, we shall introduce 

concepts of systems, general systems and so on, by use of which we can state or 

understand various kinds of phenomena through our measurement theory endowed 

with two axioms. 

A system is denoted by S, and a system with a state Ω∈ω  is denoted by ( ).ωS  

Under this setting, we introduce concepts of measurements of observables for 

systems. 

A measurement of observable ( ) ( )Ω=
CX FXO ,,: F  for system ( )ωS  is 

denoted by ( ( ) ),, ωSOM  by which a measured-value is obtained as an element of X. 

The notation ( ( ) )∗SOM ,  is used for ( ( ) ),, ωSOM  when we regard 0Ω∈ω  as a 

seemingly unknown state. 

Under this understanding of these terminologies, observables and measurements, 

we adopt Born’s probabilistic interpretation of quantum mechanics as an axiom in a 

foundation of measurement theory. 

Axiom 1. The probability that a value measured by (( ) ( ) ( ) )ωΩ SFXM
CX ,,, F  

belongs to a set XE F∈  is given by ( ) ( ).ωEF  
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Axiom 1 together with the identification ( )Ω≡Ω p
M  reads 

A: If ( ),Ω∈δω
p

M  the probability that a value measured by 

(( ) ( ) ( ) )ωΩ SFXM
CX ,,, F  belongs to XE F∈  is given by ( ) ., EFωδ  

2. Heisenberg Pictures 

In this section, we study a relation among systems, which is a fundamental 

concept in our measurement theory. 

For a given observable ( ) ( )( ),...,,2,1,,: nkFXO CkXkk k
== ΩF  the triplet 

( )Ω=













= ∏

=Π
C

n

k
Xk FXO

k
n
k

1

,,:
1

F  

is called a product observable of { } ,1
n
kkO =  if 

( )∏∏
==

=












 n

k

kk

n

k

k EFEF

11

 for ∏ ∏
= =

∈

n

k

n

k

Xk k
E

1 1

;F  (1) 

the mapping F is denoted by ∏ =

n

k kF
1

.  

Let { }nT ...,,2,1=  and t1  be the constant 1 in ( ).tC Ω  

A continuous linear operator ( ) ( )0: Ω→ΩΦ CC tt  for Tt ∈  is called a 

Markov operator, if 

 (i) ( ) 0≥Φ ft  for any positive function f in ( ),tC Ω  

(ii) ( ) .11 0=Φ tt  

A Markov operator ( ) ( )0: Ω→ΩΦ CC tt  is called a homomorphic Markov 

operator, if it is homomorphic, that is, 

( ) ( ) ( )gff ttgt ΦΦ=Φ  for f, ( ).tCg Ω∈  

Let ( ) ( )tt CtXtt FXO Ω= ,, F  ( )Tt ∈  be an observable. The triplet 
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( ) ( )0
,,: ΩΦ=Φ CttXttt FXO

t oF  is verified to be an observable, and called a      

pull-back observable of tO  by a Markov operator .tΦ  

Let ( ) ( )t
mm

t Ω→ΩΦ∗
MM 0:  be the dual Markov operator of 

( ) ( )0: Ω→ΩΦ CC tt  

defined by 

( ) ( ) ( )( )ff tt Φρ=ρΦ∗  for ( )0Ω∈ρ m
M  and ( ).tCf Ω∈  (2) 

Then, the following inclusion is known to hold (cf. [3], [6]): 

 (i) ( ( )) ( ),0 t
mm

t Ω⊂ΩΦ∗
MM  

(ii) ( ( )) ( ),0 t
pp

t Ω⊂ΩΦ∗
MM  provided tΦ  is homomorphic. 

Under the identifications ( ) ,Ω≡Ωp
M  the above property (i) reads that the dual 

operator ∗Φ t  induces a transition probability rule ( )BM ,ω  defined by 

( ) ( ) ( )BBM t ω
∗ δΦ=ω :,  for 0Ω∈ω  and ,

t
B Ω∈ B  

and (ii) does that ∗Φ t  induces a continuous linear map tt Ω→Ωφ 0:  defined by 

( ) ( )ω
∗

ωφ δΦ=δ tt
:    for ,0Ω∈ω  (3) 

where we adopt the identification ( ).ωδ≡ω  

Let an observable ( ) ( )tt CtXtt FXO Ω= ,,: F  be given for each ,Tt ∈  and a 

tree (4) 

 

 (4)

 

with Markov operators ( )....,,2,1 ntt =Φ  
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Definition 1 (General systems). A tree in figure (4) together with a state 

00 Ω∈ω  is called a general system with an initial state 0ω  and denoted by 

( ( ) { } ).,
0 TttS ∈ω Φ  

As an axiom for setting a measurement theory, Ishikawa [2] adopts the 

Heisenberg principle of taking simultaneous measurements. We cite the formulation 

stated in [5]. 

Axiom 2. For a general system ( ( ) { } )
TttS ∈ω Φ,

0
 with an initial state 00 Ω∈ω  

and a family {( ) ( )} TtCtXt tt
FX ∈Ω,, F  of observables, there is taken the pull-back 

and product observable 

( )

.,,

0Ω∈ ∈













Φ∏ ∏∈Π

CTt Tt

ttXt FX
tTt

oF  

Remark 2 (Simultaneous measurements). The product observable is used to take 

only one measurement for more than one observables. For example, given two 

observables 1O  and 2O  and ,Ω∈ω  we take a simultaneous measurement 

( ( ) ),,21 ω× SOOM  not ( ( ) ) ( ( ) ),,, 21 ωω × SOMSOM  the fundamental principle in 

quantum mechanics: 

• Only one measurement is permitted to take even in the classical measurement 

theory. 

3. Bayes Formulation 

Definition 3 (Bayes operators). Let { }
TttO ∈  be a family of observables 

( ) ( )tt CtXtt FXO Ω= ,,: F  and ( ( ) { } )
TttS ∈ω Φ,

0
 a general system with an initial 

state .00 Ω∈ω  We call a family { ( ) } TtXtE t
tTt

EB ∈
τ ∈

∈Π
F:  of positive bounded 

linear operators 
( ) ( ) ( )0: Ω→Ωτ

∈Π
CCB tEtTt

 a Bayes operator at ,T∈τ  if 

(BO) for any observable ( ) ( ),,,:
ττ Ωτττ =′

CY GYO F  there exists an observable  
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( )0

ˆ,,:ˆ
0

Ω∈
×τ 













×= ∏ ∈τ Π

CTt
XYt FXYO

tTt
F  

which satisfies, for 
tXtE F∈  ( ),Tt ∈  

(i) 
( ) ( )( ) 













×′=′ ∏ ∈

τττ
τ

∈Π Tt
tE

EEFEGB
tTt

ˆ  for ,
τ

∈′τ YE F  

(ii) 
( ) ( ) ∏ ∏∈ ∈

τ
τ














Φ=

∈Π Tt Tt
tttE

EFB
tTt

,1  

(iii) 
{ }

( )( ) ( ) ( )( ).
\

τττττττ×
′Φ=′

τ∈τ Π EGEFEGB
tTt XE

 

We introduce a normalized dual Bayes operator 
( ) ( ) →Ωτ

∈Π 0: m

EtTt

R M  

( )τΩm
M  defined by 

( ) ( )

( ) ( )

( ) ( )vB

vB

vR

tTt

tTt

tTt

E

E

E ∗
τ

∗
τ

τ















=

∈

∈

∈

Π

Π
Π

 for ( ),0Ω∈ mv M  (5) 

where 
( )

∗
τ








∈Π tTt E
B  is the dual operator of Bayes operator 

( )
.

τ

∈Π tTt E
B  

Theorem 4 (Existence theorem of Bayes operators). Let { }
TttO ∈  be a family of 

observables ( ) ( )tt CtXtt FXO Ω= ,,: F  and ( ( ) { } )
TttS ∈ω Φ,

0
 a general system with 

an initial state .00 Ω∈ω  Then, there exists a Bayes operator 
( )τ

∈Π tTt E
B  at each 

.T∈τ  

Proof. We construct a pull-back and product observable 

( )

,ˆ,,:ˆ

0

00

Ω∈
×τ 













×= ∏ ∈τ Π

CTt
XYt FXYO

tTt
F  

where 
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( )
{ }

∏
τ∈

τττ
Φ××Φ=

\

0 .ˆ

Tt

tt
FGFF oo  (6) 

The observable 0Ô  introduces a Bayes operator such that 

( )( ) ( ) ( )( ) ( )
{ }

∏
τ∈

τττττττ Φ′Φ=′
∈Π

\

.

Tt

tttE
EFEGEFEGB

tTt
o  (7) 

 ~ 

Lemma 5. Let .T∈τ  If ( ) ( )0: Ω→ΩΦ ττ CC  is a homomorphic Markov 

operator, then, it holds, for any observable ( ) ( ),,,
ττ Ωττ CY GY F  that 

( ) ( )( ) ( ) ( ).
~

0 t
tTt

Xt

Tt

tE
EEFEGEGB F∈














′Φ=′ ∏

∈

τττττ
τ

∈Π o  (8) 

Proof. From the condition of homomorphic Markov operators, it directly follows 

that 

( ) ( )( ) ( ) ( ).τττττττττττ ′ΦΦ=′Φ EGEFEGEF oo  

Then, (7) implies (8). ~ 

4. Regression Analysis in Measurement Theory 

In this section, we try to make an interpretation of regression analysis which 

infer the state at T∈τ  after taking the measurement. 

For observables 

( ) ( )( )TtFXO
tt CtXtt ∈= Ω,,: F  and ( ) ( ),,,:

ττ Ωτττ =′
CY GYO F  

we let ,
~

0O  
( )

,
τ

∈Π tTt E
B  0Ô  and 

( )τ

∈Π tTt E
R  be defined in Definition 3. 

In terms of Bayes operators, we shall give an interpretation of the following 

issue 1B  in inferences. 

:B1  Under the information that a value ∏ ∈Tt tx  measured by ( ( ) )∗SOM ,
~

0  

belongs to ∏ ∈Tt tE ,  we determine ∗  to be Ω∈ω0  as an inferred value in the 

system S. 
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The statement 1B  can be regarded as equivalent to the following: 

:B2  Under the information that a value measured by ( ( ) )∗SOM ,ˆ
0  belongs to 

∏ ∈τ ×
Tt tEY ,  we determine ∗  to be Ω∈ω0  as an inferred value of the system S. 

Under the condition ,B2  a value in τY  is distributed under the conditional 

probability, that is, the probability that y belongs to E′  is equivalent to 

( ),EP
tTt E

′
∈Π  where 

( )
( )

( )
.

~

ˆ

:

00

00

ω








ω






 ×′

=′

∏

∏

∈

∈

∈Π

Tt
t

Tt
t

E
EF

EEF

EP
tTt

 (9) 

From the condition (i) and (ii) of Bayes operator, we see 

( )

( )

( ) ( )( ) ( )

( ) ( ) ( )
.

1~

ˆ

0

0

00

00

ω

ω′

=

ω








ω






 ×′

τ
τ

τ

∈

∈

∈

∈

Π

Π

∏

∏

tTt

tTt

E

E

Tt
t

Tt
t

B

EGB

EF

EEF

 (10) 

The identity 
( ) ( ) ( ) ( ( ) ) ( ) τω

∗τ
τ

τ δ=ω
∈∈ ΠΠ

1,1
00

tTttTt EE
BB  implies 

( ) ( ) ( ) ( ( ) ) ( ) ( ) .,1
00 EGBB

tTttTt EE
′δ=ω ω

∗τ
τ

τ

∈∈ ΠΠ
 (11) 

Together with (5), the identifies (10) and (11) implies 

( ) ( ) ( ) ( ) .,
0

EGREP
tTttTt EE

′δ=′ ω
τ

∈∈ ΠΠ  (12) 

By the identity (12), we see that the following 3B  is equivalent to 1B  and to :B2  

:B3  Under the information that a value ∏ ∈Tt tx  measured by ( ( ) )∗SOM ,
~

0  

belongs to ∏ ∈Tt tE ,  the probability that the measured value in Y belongs to 

YE F∈′  is given by 
( ) ( ) ( ) .,

0
EGR

tTt E
′δω

τ

∈Π
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With a view of the assertion A of Axiom 1, Bayes formulation of a posterior 

state of measurements is given in the following form: 

Bayes formulation. Under the condition ,B1  if an initial state ∗  of the system S 

is inferred to be ( ),00
Ω∈δω

p
M  then a posterior state at T∈τ  after taking 

( ( ) )∗SOM ,
~

0  is described as 
( ) ( ) ( ).

0 τω
τ Ω∈δ

∈Π
m

EtTt

R M  

With using Bayes formulation, calculations of posterior states can be represented as 

the following theorem. 

Theorem 6. For ,T∈τ  we take a family { ( ) } TtXtE t
tTt

ER ∈
τ ∈|

∈Π
F  of Bayes 

operators. Then, we infer 

(i) a posterior state at T∈τ  after taking ( ( ) )∗SOM ,
~

0  to be 
( ) ( );

0ω
τ δ

∈Π tTt E
R  

(ii) a posterior state at T∈τ  after taking ( ( ) )∗SOM ,
~

0  to be ( ),
0ω

∗
τ δΦ  

provided τΦ  is homomorphic. 

Proof. The proof of (i) clearly follows from Bayes formulation. We shall give a 

proof of the statement (ii). From the notation of normalized dual Bayes operator, we 

see 

( ) ( )

( ) ( )

( ) ( )
0

0

0

,

,

ω

∗
τ

τ
τ

ω

τω
τ

δ






δ
=δ

∈

∈

∈

Π

Π
Π

tTt

tTt

tTt

E

E

E

B

gB

gR  for ( ).ττ Ω∈ Cg  (13) 

The assertion Lemma 5 gives us 

( ) ( )
( )00

0

~

~
,

,
0

0

ω








Φ






δ

=δ

∏

∏

∈

ττ
∈

ω

τω
τ

∈Π
Tt

t

Tt
t

E
EF

gEF

gR
tTt

 

( ) τω
∗
τ δΦ= g,

0
 for ( ),ττ Ω∈ Cg  (14) 

which implies the desired identity 
( ) ( ) ( ).

00 ω
∗
τω

τ δΦ=δ
∈Π tTt E

R  ~ 
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In inference issue ,B1  we rely on Gauss-Fisher’s principle to determine an 

inferred value, so that the scheme to get an inferred value is prescribed in the 

following theorem. 

Theorem 7. Assume that a value measured by ( ( ) )∗SOM ,
~

0  belongs to 

∏ ∈Tt tE .  Then, an inferred value 0ω  to the issue 1B  is obtained by 

( ) ( ).
~

max
~

000
0

ω













=ω














∏∏

∈
Ω∈ω

∈ Tt

t

Tt

t EFEF  (15) 
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