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Abstract

To make a unified understanding of statistic theory, we have proposed a
measurement theory which is stated with an introduction of two axioms
based on the principle in quantum mechanics, Born’s probabilistic
interpretation and Heisenberg’s picture representation of simultaneous
measurements. The objective of this paper is to examine regression

analyses through the measurement theory.

0. Introduction

Adopting, as axioms, Born’s probabilistic interpretation and Heisenberg’s
simultaneous measurements in quantum mechanics, Ishikawa [2] introduced a

measurement theory with a view to setting a framework to make a unified
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understanding of various kinds of research fields in so-called system theories. The
objective of the present paper is to apply the method to give a good understanding of
inferred issues in statistics, where we rely on Gauss-Fisher’s principle via Bayes

theory.

Throughout in this paper, the symbol Q denotes a compact Hausdorff space with
the Borel field Bg. The space C(Q) denotes the Banach-algebra:

C(Q)={f : Q — R| f is continuous on Q}.

endowed with canonical structures. We use the notation: for functions f, g, the

function f, denotes the product of the functions and the inequality f < g is

defined by
f(o) < g(w) for me Q.

The function 0 and 1 denotes the zero function and the constant 1 function,
respectively.

Let C(Q)" be the dual Banach space of C(Q) with the operator norm and with
the product (p, f) for pe C(Q)" and f € C(Q). We denote by M(Q) the set of

all measures on Bg. The Riesz theorem says that C(Q)" and M(Q) can be
identified in the following sense: there exists an isometrically continuous, linear and

bijective map ¥ : M(Q) — C(Q)" with the identity
() (f) = j J(@p(do) for f e C(Q) and pe M(Q)

We shall introduce two subclasses of M(Q): the mixed state class M™(Q)

and the pure state class MP” (Q) defined by

M™M(Q) ={pe M(Q)|p(A) =0 for Ae Bg and p(Q) =1},

MP(Q) =1{8, € M(Q)|we Q},

where J, is a point measure at @ € €, i.e.,

8,(A)=1 for e A and O for @ & A.
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The space MP(Q) with the weak™ topology can be identified with the Q,

MP(Q) is called a state space under the identification.

1. Born Interpretations

Following Davies [1], we shall introduce a concept of observables. In all

descriptions of this paper, the symbol X denotes a set composed of finite elements

and Fy = 2% the power set of X. We call a triplet (X, F y, F)C(Q) with an index

C(Q) an observable if F : Fy — C(Q) satisfies
() 0SS F(E)<1for Ee Fy, F(@)=0 and F(X) =1,
(i) F(E; U E;) = F(E) + F(E,) for disjoint sets E;, E, € F .

By abstracting some concepts in mathematical engineerings, we shall introduce
concepts of systems, general systems and so on, by use of which we can state or
understand various kinds of phenomena through our measurement theory endowed

with two axioms.

A system is denoted by S, and a system with a state @ € Q is denoted by S(g)).

Under this setting, we introduce concepts of measurements of observables for

systems.

A measurement of observable O = (X, Fy, F)C(Q) for system Sg) is
denoted by M (O, S(y)), by which a measured-value is obtained as an element of X.
The notation M (O, S(*)) is used for M (O, S(m)), when we regard we Q; as a

seemingly unknown state.

Under this understanding of these terminologies, observables and measurements,
we adopt Born’s probabilistic interpretation of quantum mechanics as an axiom in a

foundation of measurement theory.

Axiom 1. The probability that a value measured by M (X, Fx, F )C(Q)’ S(@))

belongs to aset E € F y is given by F(E) ().
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Axiom 1 together with the identification Q = M” (Q) reads

A: If 8,e MP(Q), the probability that a value measured by
M((X, Fy, F)C(Q), S(w)) belongsto E € Fy is given by (8, F(E)).

2. Heisenberg Pictures

In this section, we study a relation among systems, which is a fundamental

concept in our measurement theory.

For a given observable Oy = (X, Fx,» Fx )C(Q)(k =1, 2, .., n), the triplet

is called a product observable of {0} };,_,. if

F[ﬁEk]=ﬁFk(Ek)for ﬁEkeﬁka; ()
k=1 k=1 k=1 k=1

the mapping F is denoted by HZ:I F.

Let T ={l, 2, ..., n} and 1, be the constant 1 in C(Q,).

A continuous linear operator @, : C(Q,) > C(Qqy) for re T is called a

Markov operator, if
(i) @,(f) = 0 for any positive function fin C(Q,),
(i) @,(1,) = 1.

A Markov operator @, : C(Q,) = C(Qg) is called a homomorphic Markov

operator, if it is homomorphic, that is,
q)l(fg) =®,(f)P,(g) forf, g € C(Q,).

Let O, =(X,, fX,’Ft)C(Q,) (tfe T) be an observable. The triplet
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P,0, = (X,, Fx,» CDIOFI)C(QO) is verified to be an observable, and called a

pull-back observable of O, by a Markov operator ®,.

Let ®; : M"(Q() — M™(Q,) be the dual Markov operator of
D, : C(Q,) = C(Q)
defined by
@;(p)(f) = p(®,(f)) for p e M"(Q) and f € C(&,). €)
Then, the following inclusion is known to hold (cf. [3], [6]):
(i) @/ (M"(Q)) € M™ (),
(i) @ (MP(Qq)) c MP(Q,), provided ®, is homomorphic.

Under the identifications M”(Q) = Q, the above property (i) reads that the dual

operator ®; induces a transition probability rule M (o, B) defined by
M(®, B) := ®;(3,)(B) for o€ Q; and B e Bg,.
and (ii) does that @, induces a continuous linear map ¢, : Q; — Q, defined by
5(1),(0)) = CID;k(Sw) for e Q, 3)
where we adopt the identification ® = ).

Let an observable O; := (X, Fx . FI)C(Q,) be given for each te T, and a

tree (4)

“

with Markov operators ®, (r =1, 2, ..., n).
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Definition 1 (General systems). A tree in figure (4) together with a state

Wy € Q is called a general system with an initial state @y and denoted by

(S(ag)» {@rker)-

As an axiom for setting a measurement theory, Ishikawa [2] adopts the
Heisenberg principle of taking simultaneous measurements. We cite the formulation
stated in [5].

Axiom 2. For a general system (S(mo)’ {®,},.,) with an initial state @) € Q

and a family {(X,, F x,» Fi )C(Q,)}teT of observables, there is taken the pull-back

and product observable

[1% 7mx, H“’r"ﬁj |
C(Qo)

teT teT

Remark 2 (Simultaneous measurements). The product observable is used to take
only one measurement for more than one observables. For example, given two

observables O; and O, and we Q, we take a simultaneous measurement
M(0; X Oy, S(q)), not M(Oy, S(p)) X M(O,, S(@)), the fundamental principle in
quantum mechanics:

¢ Only one measurement is permitted to take even in the classical measurement

theory.

3. Bayes Formulation

Definition 3 (Bayes operators). Let {0,}t€T be a family of observables
O; = (X;, Fx, Ft)C(Q,) and (S(gy)s {®r}er) @ general system with an initial

state ) € Q. We call a family {Bﬁ)zeTE tE; € Fx, her of positive bounded

t

linear operators B{—TI) e C(Q,) = C(Qq) aBayes operator at 1€ T, if
teTEt

(BO) for any observable Oz := (Y, Fy,, Gt)C(QT)’ there exists an observable
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teT

0

which satisfies, for E, € ]:Xt (reT),

(i) B(TTI)reTEr (G.(E})) = I:"[E; leeT E, ] for E; e Fy..

.. (1) -~

(i) Ber TE (IT) HteT @k (HzeT Ei J’

(ii1) BETXHtET\{T}XI‘ (G‘C(E‘C)) = q)t(Ft(Et)Gt(Et ).

We introduce a normalized dual Bayes operator R{—TI) s MM(Qg) &
teTE

M™(Q,) defined by

(1) )
B (v)
R(ﬁ) (v) = ( s, for ve M™(Q), ®)
reTEr (1:) *
I BT .r, 0|

*
where (B(T) ) is the dual operator of Bayes operator B(I) .
Hte TEt P Y P HreT t

Theorem 4 (Existence theorem of Bayes operators). Let {0, },_; be a family of

observables O, = (X,, Fx, Ft)C(Q,) and (S(‘Do)’ {@,}.,) ageneral system with
an initial state ®y € . Then, there exists a Bayes operator Bﬁ) at each
teT*t

teT.

Proof. We construct a pull-back and product observable

N

teT C(Q)

where
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Fy =@ . (F, x Gy)x II(I)tOFt. (6)

©
teT\{t}

The observable éo introduces a Bayes operator such that

By, (G:(E2)) = @o(Fr(E:) Ge(E7)) c}pto F.(E,). 7
teT \{7

O

Lemma 5. Let teT. If ®,:C(Q;) > C(Qy) is a homomorphic Markov

operator, then, it holds, for any observable (YT, FYT’ G, )C(Qr)’ that
(T) ’ £ ’\ =
By . (Ge(ED) @tQGT(ET)FO[g EtJ (E € Fx,). ®)

Proof. From the condition of homomorphic Markov operators, it directly follows
that

. (Fy(E;)Go(EY)) = @ Fo(E;)® . Go(E;).

Then, (7) implies (8). ]

4. Regression Analysis in Measurement Theory

In this section, we try to make an interpretation of regression analysis which

infer the state at Te T after taking the measurement.
For observables

0, = (X[’ th’ Ft)C(Qr)(te T) and 0‘:7 = (YT’ fYq:’ GT)C(QT)’

we let 50, Bﬁ) s 00 and R(t) be defined in Definition 3.
teTEt

reTEs

In terms of Bayes operators, we shall give an interpretation of the following

issue B, in inferences.

B; : Under the information that a value HteT x, measured by M (50, Sx))

belongs to HleT E,, we determine * to be ®y € £ as an inferred value in the

system S.
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The statement By can be regarded as equivalent to the following:

B, : Under the information that a value measured by M (00, S(x)) belongs to

Y, x HzeT E,, we determine * to be ®y € Q as an inferred value of the system S.

Under the condition B,, a value in Y. is distributed under the conditional

probability, that is, the probability that y belongs to E’ is equivalent to
PHteTEt (E’), where

ﬁO(E’theT E, )(mo)

P (E) = ©)
teTEt o
FO (HIET Et j (0)0)
From the condition (i) and (ii) of Bayes operator, we see
g | E (t) ’
FO(E <[]._, & )(coo) _ 8115, (OED (@0) o)
~ (1)
AT Joo BT ,s 00 @)
; ; (1) o (1) * . .
The identity BHteTEt (1) (0g) = <(BHteTEt) (O ), 1;) implies
(t) _ (T) * ’
B} g Ue)@0) = ([ (B} )" Gay) |, GE). (1
Together with (5), the identifies (10) and (11) implies
N (‘C) ’
PHreTEt (E) = <RHt€TEt (5(00 ), G(E")). (12)

By the identity (12), we see that the following B3 is equivalent to By and to B, :

B3 : Under the information that a value HleT x, measured by M (0O, S(x))
belongs to I_Le TEf’ the probability that the measured value in Y belongs to

E’e Fy is given by (Rﬁ) E (B ): G(E')).
te t
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With a view of the assertion A of Axiom 1, Bayes formulation of a posterior

state of measurements is given in the following form:
Bayes formulation. Under the condition By, if an initial state * of the system §

is inferred to be 8y € MP(Qq), then a posterior state at te T after taking

M (O, S(x)) is described as Rﬁ)teTEt (5@0)6 M™(Q,).

With using Bayes formulation, calculations of posterior states can be represented as

the following theorem.
Theorem 6. For 1€ T, we take a family {Rﬁ) v |E, € Fx, Yer of Bayes
teT Bt
operators. Then, we infer

(i) a posterior state at 1€ T after taking M(éo, S(x)) to be Rﬁ)reTEr (5(00 );

(ii) a posterior state at t1€ T after taking M(50, S(*)) to be CDT,(S(DO),

provided ® . is homomorphic.

Proof. The proof of (i) clearly follows from Bayes formulation. We shall give a

proof of the statement (ii). From the notation of normalized dual Bayes operator, we

see
<6(D0 ) B(t) (gT)>
(Rﬁ) v, Boo ) 82) = (1) H[ET*ET for gr € C(Q). (13)
te t T
" (BHtGTEt) (8(00) "

The assertion Lemma 5 gives us

oAl L oo
ﬁo(HteT E, j(wo)

<R{%)tETEt (80)0 ), gT) B

= (®1(8), g1) for g € C(Qy), (14)
which implies the desired identity Rﬁ) (8. ) = @:(8 ). d
reTEs 0 0
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In inference issue B;, we rely on Gauss-Fisher’s principle to determine an

inferred value, so that the scheme to get an inferred value is prescribed in the
following theorem.

Theorem 7. Assume that a value measured by M (O, S(x)) belongs to

HleT E,. Then, an inferred value ) to the issue B, is obtained by

ﬁO(H E,j (@) = max ﬁO[H Etj (). (15)

teT teT
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